miércoles, 12 de noviembre de 2014



DISOLUCIONES, SOLUCIONES Y SOLVENTES

DISOLUCIONES:
Las disoluciones son mezclas homogéneas de sustancias en iguales o distintos estados de agregación. La concentración de una disolución constituye una de sus principales características. Bastantes propiedades de las disoluciones dependen exclusivamente de la concentración. Su estudio resulta de interés tanto para la física como para la química.


El estudio de los diferentes estados de agregación de la materia se suele referir, para simplificar, a una situación de laboratorio, admitiéndose que las sustancias consideradas son puras, es decir, están formadas por un mismo tipo de componentes elementales, ya sean átomos, moléculas, o pares de iones. Los cambios de estado, cuando se producen, sólo afectan a su ordenación o agregación.
Sin embargo, en la naturaleza, la materia se presenta, con mayor frecuencia, en forma de mezcla de sustancias puras. Las disoluciones constituyen un tipo particular de mezclas. El aire de la atmósfera o el agua del mar son ejemplos de disoluciones. El hecho de que la mayor parte de los procesos químicos tengan lugar en disolución hace del estudio de las disoluciones un apartado importante de la química-física.

FUNCIONES:
          

                       


DISOLUCIONES Y CAMBIOS DE ESTADO:
Entre las propiedades coligativas de las disoluciones se encuentra el aumento del punto de ebullición y la disminución del punto de congelación con respecto a los valores propios del disolvente puro. Este aumento del rango de temperaturas correspondiente al estado líquido, fue descrito por el físico-químico francés François Marie Raoult (1830-1901), quien estableció que las variaciones observadas en los puntos de ebullición y de congelación de una disolución eran directamente proporcionales al cociente entre el número de moléculas del soluto y el número de moléculas del disolvente, o lo que es lo mismo, a la concentración molal.
La interpretación de esta ley en términos moleculares es la siguiente: la presencia de moléculas de soluto no volátiles en el seno del disolvente dificulta el desplazamiento de las moléculas de éste en su intento de alcanzar, primero, la superficie libre y, luego, el medio gaseoso, lo que se traduce en un aumento del punto de ebullición. Análogamente, las moléculas de soluto, por su diferente tamaño y naturaleza, constituyen un obstáculo para que las fuerzas intermoleculares, a temperaturas suficientemente bajas, den lugar a la ordenación del conjunto en una red cristalina, lo que lleva consigo una disminución del punto de congelación.





SOLUCIONES:
Las soluciones en química, son mezclas homogéneas de sustancias en iguales o distintos estados de agregación. La concentración de una solución constituye una de sus principales características. Bastantes propiedades de las soluciones dependen exclusivamente de la concentración. Su estudio resulta de interés tanto para la física como para la química. Algunos ejemplos de soluciones son: agua salada, oxígeno y nitrógeno del aire, el gas carbónico en los refrescos y todas las propiedades: color, sabor, densidad, punto de fusión y ebullición dependen de las cantidades que pongamos de las diferentes sustancias.
La sustancia presente en mayor cantidad suele recibir el nombre de solvente, y a la de menor cantidad se le llama soluto y es la sustancia disuelta.
El soluto puede ser un gas, un líquido o un sólido, y el solvente puede ser también un gas, un líquido o un sólido. El agua con gas es un ejemplo de un gas (dióxido de carbono) disuelto en un líquido (agua).
Las mezclas de gases, son soluciones. Las soluciones verdaderas se diferencian de las soluciones coloidales y de las suspensiones en que las partículas del soluto son de tamaño molecular, y se encuentran dispersas entre las moléculas del solvente.
Algunos metales son solubles en otros cuando están en el estado líquido y solidifican manteniendo la mezcla de átomos. Si en esa mezcla los dos metales se pueden solidificar, entonces serán una solución sólida.
El estudio de los diferentes estados de agregación de la materia se suele referir, para simplificar, a una situación de laboratorio, admitiéndose que las sustancias consideradas son puras, es decir, están formadas por un mismo tipo de componentes elementales, ya sean átomos, moléculas, o pares de iones. Los cambios de estado, cuando se producen, sólo afectan a su ordenación o agregación.

PROPIEDADES FÍSICAS DE LAS SOLUCIONES:
Cuando se añade un soluto a un solvente, se alteran algunas propiedades físicas del solvente. Al aumentar la cantidad del soluto, sube el punto de ebullición y desciende el punto de solidificación. Así, para evitar la congelación del agua utilizada en la refrigeración de los motores de los automóviles, se le añade un anticongelante (soluto). Pero cuando se añade un soluto se rebaja la presión de vapor del solvente.
Otra propiedad destacable de una solución es su capacidad para ejercer una presión osmótica. Si separamos dos soluciones de concentraciones diferentes por una membrana semipermeable (una membrana que permite el paso de las moléculas del solvente, pero impide el paso de las del soluto), las moléculas del solvente pasarán de la solución menos concentrada a la solución de mayor concentración, haciendo a esta última más diluida. Estas son algunas de las características de las soluciones:
  • Las partículas de soluto tienen menor tamaño que en las otras clases de mezclas.
  • Presentan una sola fase, es decir, son homogéneas.
  • Si se dejan en reposo durante un tiempo, las fases no se separan ni se observa sedimentación, es decir las partículas no se depositan en el fondo del recipiente.
  • Son totalmente transparentes, es decir, permiten el paso de la luz.
  • Sus componentes o fases no pueden separarse por filtración

CLASIFICACIONES DE LAS SOLUCIONES:
PÒR SU ESTADO DE
POR SU CONCENTRACION
SÓLIDAS
SOLUCION NO-SATURADA; es aquella en donde la fase dispersa y la dispersante no están en equilibrio a una temperatura dada; es decir, ellas pueden admitir más soluto hasta alcanzar su grado de saturación.
Ej: a 0 ºC 100 g de agua disuelven 37,5 NaCl, es decir, a la temperatura dada, una disolución que contengan 20g NaCl en 100g de agua, es no saturada.
LIQUIDAS
SOLUCION SATURADA: en estas disoluciones hay un equilibrio entre la fase dispersa y el medio dispersante, ya que a la temperatura que se tome en consideración, el solvente no es capaz de disolver más soluto. Ej una disolución acuosa saturada de NaCl es aquella que contiene 37,5 disueltos en 100 g de agua 0 ºC.
GASEOSAS
SOLUCION SOBRE SATURADA: representan un tipo de disolución inestable, ya que presenta disuelto más soluto que el permitido para la temperatura dada.
Para preparar este tipo de disoluciones se agrega soluto en exceso, a elevada temperatura y luego se enfría el sistema lentamente. Estas soluciones son inestables, ya que al añadir un cristal muy pequeño del soluto, el exceso existente precipita; de igual manera sucede con un cambio brusco de temperatura



SOLVENTES:

La utilidad de los disolventes varía mucho en función de las propiedades que presentan y la cantidad a utilizar en un determinado proceso. Se establece así una clara diferencia entre los distintos usos de los disolventes teniendo en cuenta sus efectos nocivos para la salud humana, de tal forma que muchos de los que se emplean a escala de laboratorio sin presentar ningún tipo de riesgo para los trabajadores, pueden ser altamente peligrosos en caso de ser utilizados a escala industrial. Además, es necesario tener en cuenta que los disolventes se pueden utilizar tanto en forma de disolventes puros como en forma de mezclas de disolventes, destacando que en el último caso, las propiedades de los componentes no se suman sino que la mezcla presenta propiedades nuevas como si se tratase de un disolvente puro.


APLICACIÓN DE LOS SOLVENTES EN LA INDUSTRIA:
A lo largo de los años se han utilizado y desarrollado una amplia variedad de disolventes. De forma sencilla, y para generar una idea simple, se presenta a grandes rasgos una breve evolución de los disolventes en la industra [1]
En un inicio, en el ámbito industrial, se comenzaron a utilizar principalmente como disolventes los hidrocarburos derivados del petróleo (hexano o benceno por ejemplo) y los disolventes oxigenados (alcoholes, cetonas, ésteres), a pesar de ser disolventes muy utilizados en la industria tienen asociados ciertos riesgos respecto a la salud humana y al medio ambiente, por lo que en la medida de lo posible se plantea la sustitución de los mismos por otros alternativos. Uno de los tipos de disolventes que se plantean como alternativa son losclorocarbonados , que son bastante seguros en cuanto a su manipulación pero por el contrario son cancerígenos.
A modo de curiosidad, un ejemplo anecdotario sobre como puede surgir la evolución de los disolventes en las industrias, es el uso deCFCs (clorofluorocarbonados) como disolventes, como por ejemplo el CF2Cl--CFCl2 (llamado CFC-113) utilizado en una proporción de 2Kg por metro cuadrado, en la limpieza de grasa, pegamento y residuos de soldadura en paneles de circuito electrónicos tras ser fabricados. Aunque es cierto que principalmente, se empleaban más que como disolventes para la formación de aerosoles y para la creación de refrigerantes . En el caso de utilización de CFCs no se presentaban riesgos por toxicidad en personas pero, sin embargo, resultaron ser perjudiciales para la capa de ozono. Se sustituyeron entonces temporalmente por los HCFCs(hidrógenofluorocarbonados) considerando que esta alternativa era una gran solución, aunque se observó que contribuyen al efecto invernadero de forma que se intenta prescindir de su uso.

PROCESOS DE EXRACCION:
La exraccion con disolventes se emplea para la separación de compuestos de interés aprovechando las diferencias de solubilidad de los componentes de la mezcla y el disolvente de extracción adecuado que se haya seleccionado. Con la extracción se permite por tanto obtener el producto de una reacción de forma selectiva o bien eliminar las impurezas que puede contener la mezcla con el producto de interés. Por una parte, este tipo de aplicación presenta una ventaja importante y es que permite que se lleve a cabo la eliminación del disolvente por evaporación, pero sin embargo, tiene como inconveniente que la cantidad de disolvente a emplear es mucho mayor que para el caso de su utilización como medio de reacción. De forma general los procesos de extracción se pueden clasificar como:
• ABSORCION DE GASES: este tipo de extracción se produce cuando el material a tratar con el disolvente es un gas, un ejemplo de este tipo de extracción es la eliminación de gases industriales, como el dióxido de carbono, por tratamiento con dietanolaminas.
• EXRACCION D LIQUIDO A LIQUIDO: este tipo de extracción se produce cuando el material a tratar con el disolvente es un líqido, ejemplo de este tipo de extracción es la eliminación de hidrocarburos aromáticos con furfural en procesos de fabricación de lubricantes.
• LIXIVIACION: este tipo de extracción se produce cuando el material tratar con el disolvente es un sólido, un ejemplo de este tipo de extracción es la extracción de aceite de semillas oleaginosas.

• Tolueno: Es un líquido insoluble en agua con un olor carácterístico al tíner de las pinturas. Se utiliza como disolvente para pinturas, revestimientos, caucho, resinas, diluyente en lacas nitrocelulósicas y en adhesivos.


• Xileno: Es un líquido incoloro derivado del benceno flamable y de olor dulce. Se utiliza como solvente en pinturas, hule, cuero e industria afines.


• Acetato de etilo: Es un líquido volátil y flamable. Se utiliza como disolvente de compuestos utilizados para revestir y decorar objetos de cerámica, para la elaboración de varios compuestos explosivos además de como solvente para la fabricación de películas a base de celulosa en la industria fotográfica.
















DISOLUCIONES:Las disoluciones son mezclas homogéneas de sustancias en iguales o distintos estados de agregación. La concentración de una disolución constituye una de sus principales características. Bastantes propiedades de las disoluciones dependen exclusivamente de la concentración. Su estudio resulta de interés tanto para la física como para la química.
El estudio de los diferentes estados de agregación de la materia se suele referir, para simplificar, a una situación de laboratorio, admitiéndose que las sustancias consideradas son puras, es decir, están formadas por un mismo tipo de componentes elementales, ya sean átomos, moléculas, o pares de iones. Los cambios de estado, cuando se producen, sólo afectan a su ordenación o agregación.
Sin embargo, en la naturaleza, la materia se presenta, con mayor frecuencia, en forma de mezcla de sustancias puras. Las disoluciones constituyen un tipo particular de mezclas. El aire de la atmósfera o el agua del mar son ejemplos de disoluciones. El hecho de que la mayor parte de los procesos químicos tengan lugar en disolución hace del estudio de las disoluciones un apartado importante de la química-física.